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value of the parameter ~ (i.e. the ratio of the sample- 
to-detector flight path and the total flight path), the 
differential cross section measured in TOF neutron 
diffractometry. (b) For coherent inelastic scattering, 
this cross section is fully described by the scattering 
surface in the four-dimensional space (Qe, to). (c) For 
scattering by low-frequency acoustic phonons, this 
surface is defined at every point of the space Qe if 
/3 </3~ but it is not defined in some regions of this 
space if/3 >/3~. (d) Forbidden ranges exist in both 
incident wavelengths and scattering angles if/3~ </3 
</3~,; in these ranges, the scattering is allowed if 
/3 > fl~. (e) The value of fl~ depends on the orienta- 
tion of the scanning plane in the space Qe. For the 
particular case of scanning at constant offset from 
the Bragg scattering angle, fl~, becomes 1/cos 0~, as 
reported by Willis (1986). (f) Finally, we have found 
an analytical expression for the differential cross 
section of scattering by low-energy acoustic phonons. 

This will be used in a further paper to calculate the 
TDS correction of the Bragg peaks measured by the 
TOF diffractometer. 

The authors are deeply indebted to Dr C. J. Carlile 
of the Rutherford Appleton Laboratory, England, 
for discussions on the contents of this paper. 
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Abstract 
New formulas for the full widths at half-maxima 
(FWHMs) of powder Bragg intensity profiles are 
deduced in reciprocal space, using the concept for 
the calculation of the peak width introduced for 
single-crystal diffractometry by Rossmanith [Acta 
Cryst. (1992), A48, 596-610]. In paper I, a basic 
formula for strain-free and prefer.red-orientation-free 
powders is deduced. Furthermore, it is shown that 
comparison of experimental widths with theoretical 
FWHMs calculated with the new expression results 
in physically significant values for the particle size in 
the powder. In a forthcoming paper II, the effect of 
strain on the FWHM will be analysed. 

Introduction 
Profile analysis of powder diffraction diagrams 
requires knowledge of the height, width and distribu- 
tion function (i.e. Gauss, Lorentz, pseudo-Voigt etc.) 
of the intensity profile. 
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Expressions for the calculation of the resolution 
functions of N-crystal powder spectrometers are 
given by, for example, Sabine (1987) and Wroblewski 
(1991). The formulas given by these authors are 
difficult to handle for two reasons. First, most of the 
transmission and reflection probability distributions 
involved in the expressions are not known exactly in 
routine powder diffraction experiments. Second, 
evaluation of these expressions requires time- 
consuming computations of integrals, even if 
approximations (for example pseudo-Voigt) for the 
distribution functions are used. 

The widths of the Bragg intensity profiles are, 
therefore, usually calculated using the simplified 
version of the formula given by Caglioti, Paoletti & 
Ricci (1958): 

A 2 0 2  - -  U tan 2 0 + V tan 0 + W. (1 a) 

In Rietveld analysis (Rietveld, 1969), the physically 
meaningless half-width parameters U, V and W are 
determined by least-squares fitting of calculated to 
measured FWHMs. 
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Rossmanith (1992) introduced a new concept for 
the calculation of the widths of Bragg intensity 
profiles for single and multiple diffraction in 
single-crystal diffractometry. In this paper and in 
Rossmanith (1993a), it is shown that, with 
representation of the half-width parameters AA/A 
(wavelength spread), ~ (divergence), r (mosaic-block 
radius) and r/ (mosaic spread) as well as the experi- 
mental conditions of the diffraction in reciprocal 
space, the widths of the profiles for single and 
multiple diffraction can be obtained from purely 
geometrical considerations. In Rossmanith (1993b), 
the simple but very effective approximation 

AOh = +-- ~ + (AA/A) tan Oh + 2A/(r sin 20h) + ~7 

= 6[ --+ 1 + (tan 0h/tan 0M)] + 2A/(r sin 20h) + ~7 (lb) 

was derived for the width A0 h of the Bragg intensity 
profile measured with a triple-crystal diffractometer 
at a synchrotron-radiation source in parallel ( - )  and 
antiparallel (+ )  arrangements of the crystal with 
respect to the monochromator. Oh and 0M are the 
kinematical Bragg angles of the sample and mono- 
chromator, respectively, and A is the wavelength. It 
was shown in Rossmanith, Werner, Kumpat, Ulrich 
& Eichhorn (1993) that, with this approximation, the 
fit of calculated to experimental widths results in 
physically significant and consistent half-width 
parameters. In Rossmanith, Adiwidjaja, Eck, 
Kumpat & Ulrich (1994), the successful application 
of the concept to multiple diffraction experiments is 
demonstrated. 

It is shown below that the concept introduced 
successfully for single-crystal diffractometry can also 
be easily applied to powder diffractometry resulting 
in an expression similar, but not equivalent, to (lb). 

The basic formula for the width of Bragg reflections 
deduced in reciprocal space 

For ideal powders, i.e. for powders consisting of 
small ideally perfect strain-free and randomly 
oriented crystallites, the width of the Bragg intensity 
profile mainly depends on the wavelength spread 
AAIA and the divergence t~ of the X-ray beam 
received by the counter and on the crystallite or 
coherent-domain size of the powder sample. 

In Fig. 1, the geometry of powder diffraction in 
reciprocal space is shown. The representation of the 
characteristics of the X-ray beam is identical for 
single-crystal and powder diffraction. The wave- 
length range AA = A~- A2 results in two limiting 
Ewald spheres with radii r* = 1/A~ = 1/(A + AA/2) 
and r~ = 1/A2 = 1/(A- AA/2), both passing through 
the origin of reciprocal space. Owing to the 
divergence ~, two such limiting broadened Ewald 
spheres, inclined relative to each other by t~, have to 
be drawn. 

For simplicity, it is assumed that the powder 
consists of ideally perfect spherical crystallites 
(coherent scattering domains), with a mean radius r 
that is small enough for absorption and extinction 
effects within the crystallites to be neglected. 

For an arbitrary reflection h, the radius of the 
spherical particles can be expressed as r = dhNh/2, 
where dh is the interplanar spacing of the reflecting 
planes and Nh is the number of planes in the sphere. 
In reciprocal space, dn is represented by the vector h 
normal to the reflecting planes with length d* = 1/dh. 
Consequently, r is represented by a vector in the 
direction of h with length e = 2/(dhNh) = 1/r. Because 
this is true for all directions h in direct space, the 
zero point of the reciprocal lattice is enlarged to a 
sphere with radius e, being a mathematical point 
only in the case of Nh = oo. Because of the transla- 
tional symmetry of the reciprocal lattice, the 
enlargement of the zero point results in an 
enlargement of all reciprocal points to 'lattice 
spheres' with a common radius e (see also Ross- 
manith, 1992, § II.A.1.) 

With a large number and completely random 
orientation of crystallites in the powder, the corre- 
sponding reciprocal-lattice spheres of the individual 
crystallites build up concentric spherical shells about 
the origin of the reciprocal lattice whose radii are the 
various possible reciprocal-lattice vectors d~. The 

2 

4a~---... 2 
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Fig. 1. The geometry of powder diffraction in reciprocal space. 
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thicknesses of the shells are consequently given by 
twice the radii e of the individual 'lattice spheres' 
(Fig. 1). 

The whole part of the shell, which lies between the 
two limiting spheres S~ and $2, is in a reflection 
position and contributes to the Bragg reflection. The 
corresponding intensity is reflected in all directions 
between the limiting rays 1 and 2 in Fig. 1. The 
maximum width of the Bragg intensity profile is 
therefore given by 

where 

A2 Oh = 61 - 62 + 6 ,  (2a) 

61 = 2 arcsin [(d* + e)/(2r*)] 

62 = 2 arcsin [(d* - e)/(2r*)] 

d* = 2 sin 0h/A. 

(2b) 

(2c) 

(2d) 

Oh is the Bragg angle corresponding to the reflection 
h, e is a function of the crystallite radius r 9nly and 
r* depends solely on the wavelength and wavelength 
spread of the radiation used. For strain-free and 
preferred-orientation-free samples, (2), which is not 
at all difficult to calculate with the help of a com- 
puter, therefore represents the angular dependence of 
the width of the Bragg intensity profile as an explicit 
function of the wavelength and the width parameters 
AAIA, 6 and r. 

can be deduced for the width A20, which can also be 
calculated from 

with 

A20 = 6 1 -  62 (3d) 

61 = 2 arcsin [(d~ + e)A/2] 

62 = 2 arcsin [(d* - e)M2]. 

For comparison with an experiment, the relation 
between the width defined in (3¢) and (3d) and the 
full width at half-maximum (FWHM) of an intensity 
profile has to be known. 

If the kinematical approach, the intensity of 
coherent scattering of an ideally monochromatic and 
parallel incident beam from an ideally perfect small 
crystal is determined by 

ideal IeIF21G2, (3e) c o h  ~--" 

where Ie is the intensity scattered by an electron and 
F is the structure factor. Ie and F are both slowly 
varying functions of 0. The intensity distribution 
function in (3e) is therefore determined by G 2, the 
exceedingly sharp interference function. 

Deriving this function G z, it is, for simplicity, 
convenient to consider the crystal as having the 
shape of a parallelepiped whose sides are parallel to 
the cell edges with the lengths a,N, (Azaroff, 1968, 

The widths of  the intensity profiles for special cases 

(a) Ideally monochromatic and parallel X-ray beam 
(~a/a = a = o )  

The angular dependence of the width on the crys- 
tallite size becomes apparent from Fig. 2. Because 
AA = 6 = 0, the X-ray beam is represented in recip- 
rocal space by only one Ewald sphere. As in Fig. 1, 
the reciprocal 'lattice spheres' belonging to the 
individual randomly oriented crystallites of the 
powder coalesce into spherical shells, whose widths 
are determined by the crystallite size. With the 
assumption once more of spherical crystallites with 
radius r, the width of the shells is given by 2e with e 
= 1/r = 2/(dhNh)= 2/(aiNi) , where the ai are the lat- 
tice constants and the Ni are the numbers of unit 
cells in the crystal lying along the directions ai. 

It is obvious from Fig. 2 that, for intermediate 
angles 0, the arc b given by 

b = A2Oh/(2A) (3a) 

can be approximated by 

b - e/cos Oh. (3b) 

From there, the approximation 

A20 = 2eA/cos 0h (3C) 

- / 

. ' , '  

Fig. 2. The geometry of powder diffraction in reciprocal space: the 
special case A,~/,~ = ~ = 0. 
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formulas 9-24 and 9-25) 

G 2 = 1--I [sin 2 NiaixTr/(sin 2 aexzr)]. (3f) 
i 

For such a crystal, x = e = 2/(aiNi) corresponds to 
the second minimum of the oscillating function G 2 in 
the direction a;. The F W H M  of the main maximum 
of G 2 is usually obtained by smoothing out the 
oscillating factors in (3f)  by exponential functions 
with the same maximum and area: 

sin 2 Niaixrr/(sin 2 aixTr)= N2i exp [ -  77"(Niaix)2]. (3g) 

The corresponding half-width of the main maximum 
of G 2 in the direction a; is therefore related to the 
width 2e approximately by 

2e(FWHM) = [In 2/(47r)]~/22e. (3h) 

It is usually assumed in standard textbooks that a 
very similar relation holds true for any direction and 
for crystals of any shape. Equation (3h) is therefore 
inserted in (3c), resulting in the Scherrer equation: 

A20(FWHM) = 0.94M(th cos Oh), (3i) 

where th = 2r is the mean dimension of the crystal- 
lites normal to the reflecting plane. 

In the second column of Table 1, the 
A20(FWHM) calculated with (3d) in connection 
with (3h) for Cu Ka~ radiation and r = 300/~ is 
given. It is easily shown that (3i) yields identical 
results for all the Bragg angles considered in Table 1. 
Deviations between (3i) and (3d), (3h) are observed 
only in the vicinity of Oh = 90 °, i.e. at Bragg angles of 
no interest in powder diffractometry. 

(b) Standard powder sample (e= 0) and negligible 
divergence (6 = O) 

The geometrical conditions for this case are given 
in Fig. 3. The angles 61 and 62 agree with twice the 
Bragg angles of the two limiting wavelengths A _  
AM2. Using the F W H M  of the wavelength spread 
for AA, the A20(FWHM) results in 

with 

A20(FWHM) = 2(01 - 02), (4a) 

01 = arcsin [(A + AA/2)/(2dh)] 

02 = arcsin [(A - AA/2)/(2dh)] 

dh = M(2sin Oh). 

The width defined in (4a) is given in the third column 
of Table 1. zl,~/,~ = 0.000306, the value given by 
Ladell, Zagofsky & Pearlman (1975) for the F W H M  
of the characteristic Cu Kax line, was used for calcu- 
lation. Comparison of these widths with the values 
obtained with the expression 

A20(FWHM) = 2AA/A tan Oh (4b) 

Table 1. The peak width A20 (FWHM) (°) calculated 
for Cu Kal radiation 

AA/A = 0.000306, 6 = 0.05 °, r = 300 A. 

20 A20(r) A20(A,~) A20(r, AA, ~) 
20 0.140 0.006 0.197 
40 0.147 0.013 0.210 
60 0.160 0.020 0.230 
80 0.180 0.029 0.260 

100 0.215 0.042 0.307 
120 0.276 0.061 0.387 
140 0.404 0.096 0.550 
160 0.796 0.199 1.045 

indicates that, for the relevant Bragg-angle region, 
the two expressions yield identical results. 

(c) Dependence on the divergence (e= AAIA = O) 

It is obvious from Fig. 1 that, for e = AA/A = 0, it 
follows that 61 = 62 and 

A20 = 6 (5) 

for all Bragg angles. 
For diffractometers with a varying divergence for 

different Bragg angles, the constant 6 in (2a) and (5) 
must be replaced by the appropriate function 6--  
6(0). 

(d) Derivation of  an approximate expression for the 
FWHM 

In the fourth column of Table 1, the full width at 
half-maximum calculated with (2) in connection with 
(3h) for AMa = 0.000306, 6 = 0.05 ° and r = 300 • is 
given. It is easily proved that identical results can be 
obtained using the expression 

A20(FWHM) --- 2AA/A tan Oh + 0.94M(th COS Oh) + 6 

(6) 
for all Bragg angles relevant in powder diffrac- 
tometry. 

O 

Fig. 3. The geomet ry  o f  powder  diffract ion in reciprocal  space: the 
special case e = 6 = 0. 
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Application of the basic peak-width formula to an 
experiment 

Experimental half-widths of ZnO and BaF2 meas- 
ured with Cu Ko~ 1 radiation are given in Fig. 3 and 
Table 1 of the paper of Langford, Boultif, Auffrrdic 
& Lou~r (1993) and in Table 2 of the paper of Lourr 
& Langford (1988), respectively. BaF2 was used by 
these authors as standard powder for the determina- 
tion of instrumental broadening. The particle size of 
the ZnO powder was obtained from transmission 
electron microscopy (TEM) by Bolis, Fubini, 
Giamello & Reller (1989), who state that the powder 
consists of 'agglomerates made up of crystallites ... 
in the range 300-600 A and that the isolated crystal- 
lites of ZnO exhibit no well defined edges, but rather 
disc-like shapes'. It has been shown by Langford et 
al. (1993) that strain broadening is negligible for 
their BaF2 and ZnO powder samples. The widths of 
ZnO as well as of BaF2 are reproduced in Fig. 4 and 
in Tables 2 and 3 of this paper. 

All three curves in Fig. 4 were calculated using the 
expressions (2) in connection with (3h) [expression 
(6) yields the same results], inserting for A,~I,~ = 
0.00306 the FWHM of the characteristic Cu Ka~ line 
and for 8 = 0 . 0 5  ° the value given by LouEr & 
Langford (1988) for the aperture of the receiving slit 
of the counter. 

The best fit with the BaF2 FWHM data (circles in 
Fig. 4) was obtained by inserting for the particle size 
(the coherent domain size) t =  1 Ixm, which is a 
typical value for a standard powder. The corre- 
sponding lowest curve in Fig. 4 matches the experi- 
mental widths very well. The small deviations 
between the experimental points and the curve, i.e. 
the shallow minimum of the measured width at 20 
50 ° is probably because the divergence of the X-ray 

1 . 0 -  

O. 8 ~ x X / x  x x 

~; 0.6 ~ ~ / /  
"T" × × 

~ 0.4 

O2 ~ ~ 

0 0  . . . .  I . . . .  t . . . .  I 
0 50 100 150 

20 (°) 

Fig. 4. E x p e r i m e n t a l  a n d  ca lcu la t ed  F W H M s  for  C u K a ,  
r ad ia t ion .  C u r v e s  ca lcu la t ed  wi th  AMA'= 0.000306,  6 = 0.05 °, 
t = 1 I~m ( lower  curve) ,  t -- 6 0 0 / ~  (midd le  curve) ,  t = 3 0 0 / ~  
( u p p e r  curve) .  C): e x p e r i m e n t a l  wid ths  o f  BaFz,  X e x p e r i m e n t a l  
wid ths  o f  Z n O .  

Table 2. Experimental and calculated widths 
(FWHM) of  BaF2 (Oh and widths in o) 

C u  Ka~ r ad i a t ion ,  zl~./,~ = 0.000306,  6 = 0.05 °, t = 1 IJ.m. 

h k 1 Oh A20o A2Oc(Azl, 6, t) A20(AA) 
1 1 1 12.43 0.066 0.066 0.008 
2 0 0 14.39 0.068 0.068 0.009 
2 2 0 20.57 0.064 0.072 0.013 
3 1 1 24.33 0.067 0.075 0.016 
4 0 0 29.80 0.072 0.080 0.020 
3 3 1 32.79 0.074 0.083 0.023 
4 2 2 37.49 0.079 0.087 0.027 
5 1 1 40.21 0.083 0.091 0.030 
5 3 1 47.31 0.096 0.100 0.038 
6 2 0 51.79 0.103 0.108 0.045 
7 1 1 62.53 0.137 0.136 0.067 
7 3 1 72.62 0.199 0.190 0.112 

~20(/) 
0.009 
0.009 
0.009 
0.009 
0.010 
0.010 
0.010 
0.011 
0.012 
0.013 
0.018 
0.028 

Table 3. The average thickness t of  the crystallites of  
ZnO in the direction of  the diffraction vector h, 
calculated using (7) for Cu Ka~ radiation, with AMA 

= 0.000306 and 8 = 0.05 ° 

h k 1 Oh (°) A 2 O ( F W H M )  (°) th (A)  

1 0 0 15.88 0.220 539 
0 0 2 17.21 0.221 542 
1 0 1 18.13 0.242 484 
1 0 2 23.77 0.323 352 
1 1 0 28.30 0.244 538 
1 0 3 31.42 0.299 427 
2 0 0 33.19 0.257 539 
1 1 2 33.97 0.266 520 
2 0 1 34.54 0.275 501 
0 0 4 36.28 0.269 533 
2 0 2 38.48 0.348 392 
1 0 4 40.69 0.427 315 
2 0 3 44.80 0.359 427 
2 1 0 46.40 0.330 495 
2 1 i 47.65 0.342 486 
I 1 4 49.30 0.346 499 
2 1 2 51.46 0.432 394 
I 0 5 52.06 0.429 404 
2 0 4 53.71 0.522 330 
3 0 0 55.19 0.394 495 
2 1 3 58.13 0.476 425 
3 0 2 60.78 0.470 476 
0 0 6 62.57 0.507 462 
2 0 5 66.95 0.680 387 
1 0 6 68.25 0.931 282 
2 1 4 69.25 0.856 328 
2 2 0 71.46 0.706 473 

beam is not a constant but varies slightly with the 
Bragg angle. In Table 2, the experimental widths 
(third column) are compared with the calculated 
widths (fourth column). The contributions to the 
width due to AM/~ [first term in (6), fifth column in 
Table 2] and t [second term in (6), sixth column in 
Table 2] are also given. It should be noted that the 
particle-size effect contributes about 10-15% to the 
total width, even for the standard powder with the 
coherent domain size t = 1 Ixm. 

The middle and upper curves correspond to the 
widths of the ZnO powder (x in Fig. 4). The middle 
curve is calculated with t = 600 A and the upper 
curve with t = 300 A with the two limiting particle 
sizes obtained from the TEM. In Table 3, the particle 
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size th calculated from (6), 

th = 0.94M{COS Oh[A20(FWHM)- 6 -  2AA/A tan Oh]}, 

(7) 

is given in the fourth column. Fig. 4, as well as the 
results given in Table 3, agrees well with the TEM 
result, confirming the applicability of the approach 
introduced in this paper. 

Discussion 

Equation (2) is applicable only to ideal powder 
samples, i.e. for powders consisting of strain-free and 
preferred-orientation-free crystaUites, whose orienta- 
tions are completely random and the number of 
which present in the irradiated specimen is very 
large. Furthermore, it was assumed that extinction 
and absorption effects can be neglected. Only such 
an ideal powder is represented in reciprocal space by 
ideally spherical concentric shells with homogenous 
thickness and occupation density. 

Strain, preferred orientation, large absorption 
and/or extinction result in deformations of these 
shells, varying d* (strain), e (absorption, extinction, 
strain) and the occupation density within the shells 
(preferred orientation). It will be shown in paper II 
that all these effects can be represented in reciprocal 
space and have to be taken properly into account, 
resulting in general equations analogous to (2). 

Concluding remarks 

Comparing the width A0h obtained for single-crystal 
diffractometry, expression (lb), with the formula for 
d20, (6), deduced for powder diffraction, it is 

obvious that the main difference is introduced by the 
term corresponding to the size of the coherently 
scattering particles. The random orientation of the 
crystallites in the powder results in COS0h in the 
denominator of this term, causing appreciable 
broadening of the Bragg reflections for large Bragg 
angles only. In single-crystal diffractometry, the crys- 
tal is rotated about the 0 axis during the scan. This 
rotation causes sin20h in the denominator of the 
particle-size term in (lb). The rocking curves are 
therefore broadened appreciably for small as well as 
for large values of Oh. 

I thank Mrs G. Kumpat and Mr G. Ulrich for 
preparing the computer graphics of Figs. 1-4. 
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Abstract 

A procedure for Patterson search, or molecular 
replacement, is described in which the criteria of fit 
are based on matching the asymmetric unit of the 
entire Patterson function. In rotation search, the 
Patterson function is compared with the self- 
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Patterson of the search model; in translation search, 
the comparison is with the full Patterson function of 
the search model. Significant features of the method 
are: (1) all overlaps of vector sets of neighboring 
molecules are taken into account; (2) all overlaps of 
the search model with neighboring copies are 
detected and the evaluation bypassed; and (3) the 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1994 


